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Abstract-A theoretical evaluation is presented of the effect of dissipation on natural circulation loops, 
heated from below and cooled from above. A one dimensional model, wherein the only space coordinate 
runs along the loop, is applied to two types of loops: (I) two vertical branches with point heat source and 
sink, and [II) a toroidal loop heated by a uniform heat flux at the lower half and cooled by a constant 
wall temperature at the upper half. 

It is found that for laminar flow in the first loop, dissipation affects only the temperature distribution 
but neither the steady state flow rate nor the stability characteristics. For laminar and turbulent flows in 
the second loop, the steady state velocities are enhanced by dissipation. Curves of marginal stability for 

various dissipation factors are given. 

NOMENCLATURE 

cross-sectional area ; 
coe&ient in the expression for the friction 
coefficient f ; 
coefficient in the expression for the friction 
coefficient f ; 
constants of integration, equations (12) and 
(29); 
specific heat ; 
dimensionless parameter for loop II, 
equation (20); 
dimensionless parameter for loop II, 
equations (20,211; 
overall frictional parameter for loop I; 
friction coefficient,f= a/Reb; 
acceleration of gravity ; 
heat transfer coefficient; 
total length of loop I ; 
constant, equation (15); 
constant, equation (15); 
ratio of perimeter to cross sectional area; 
volumetric flow rate; 
heat flux input; 
major radius of torus (Fig. 2); 
Reynolds number; 
(Hydraulic) radius of flow channel (minor 
radius of torus-Fig. 2); 
total circulation length; 
coordinate along the Ioop; 
length of heat source (and heat sink); 
temperature; 
reference temperature; 
wall (or ambient) temperature; 
A?& (constant) wall temperatures 
at heat source and sink ; 
time ; 

_ 
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characteristic velocity of loop II, 
equation (19); 
mean velocity; 
complex function, equation (30); 
vertical coordinate. 

Greek symbols 

dimensionless parameter for loop I, 
equation (4); 
thermal expansion coefficient ; 
dimensionless parameter for loop I, 
equation (4); 
angular coordinate; 
dynamic viscosity; 
density ; 
reference density (at temperature T,,,-); 
stability parameter, equations (lo), (26) ; 
wall shear stress; 
dissipation function ; 
dimensionless dissipation parameter, 
equation (5) for loop I or equation (21) for 
loop II. 

Superscripts 

steady state; 
amplitude of the deviation from steady 
state. 

1. INTRODUCTION 

SOME geophysical phenomena as well as several 
engineering applications involve free convection 
loops where a fluid is heated from below and cooled 
from above. These loops appear in atmospheric and 
oceanic flows, in refrigeration cycles of the absor- 
ption type, in cryogenic systems and in the most 
commonly used system for solar energy utilization- 
the thermosyphon solar water heater. Shitzer et al. 
[l] investigated the perfo~ance of such a heater 
(140 liters storage tank, about 3m2 collector area) 
and measured at noontime on a clear summer day in 
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Haifa, Israel (latitude 32’N) flow rates of the order of 
1 kgmin-‘, associated with a temperature variation 
between 55 and 70°C along the collector. Keller [2] 
and Welander [3] treated analytically a loop 
consisting of two vertical branches with a point heat 
source and a point heat sink (Fig. I). They 
investigated steady state behavior and oscillatory 
instability of it. Zvirin and Greif [4] investigated the 
transient behavior of this loop. Creveling et a/. [S] 

Point heat 
sink 

-AT 

Point hea 
It 

AT 
source -0 

= %L - %As 

T(s) 

i 

= %As 

a=” 

Fro. 1. The loop of two vertical branches with point heat 
source and sink. 
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FIG. 2. The circular toroidal loop. 

and Damerell and Scheonhals [6] studied experi- 
mentalIy and theoretically the instability of a circular 
loop (Fig. 2) caused by heating uniformly the lower 
half and cooling by constant wall temperature at the 
upper half. Ong [7] suggested a numerical method to 
evaluate the performance of the thermosyphonic 
solar water heater. Zvirin et al. [8,9] have applied 
several analytical models for describing the steady 
state motion and instability characteristics of such 
solar heaters. 

All the existing models for natural circulation 
loops do not take into account viscous heating of the 

fluid. The purpose of the present work is to study the 
effect of dissipation on free convection loops. Two 
systems are considered: (I), the two vertical branches 
(Fig. I)-Section 2, and (II), the toroidal loop 
(Fig. 2)--Section 3. For laminar flow in the first 
system it is found that while the steady state 

temperature distribution is changed due to dissi- 
pation, the flow rate as well as the stability 
characteristics are not affected at all. For laminar 
and turbulent flows in the second system both 
temperature and flow rate at steady state are 
modified by viscous heating. The results of Creveling 
er al. [5] for the case where dissipation can be 
neglected are extended here by a more accurate 
solution. Finally, the effect of dissipation on the 
stability of the system is evaluated. 

The models for natural convection loops are all 
one dimensional: the only space coordinate s runs 
along the circulation loop. The temperature T is thus 
the mean cross-sectional. Use is being made of the 
Boussinesq approximation wherein the density p is 
taken to be constant in the governing equations 
except for the buoyancy forces where 
p = pI,, [ I - p( T- T,,, )] ; /I is the thermal expansion 
coefficient and prcl is the density at some reference 

temperature T,,f. According to these assumptions 
and the continuity equation, the flow rate Q is 
uniform along the loop at any time t. 

The monlentum equation is obtained by in- 
tegration along the closed loop, thus the pressure 
terms vanish. Following Welander [3] and Creveling 
et al. [5]. the resulting equation is: 

dV 
p. dt S = poyj3 

P P 
Tdz - Pz,ds, (1) 

where V is the mean velocity Q/A, A is the cross- 
sectional area, S is the circulation length, g the 
acceleration of gravity, z a vertical coordinate and P 
is the ratio of perimeter to cross-sectional area. The 

wall shear stress T,+ is expressed by 7,,. = ifp( Vgc)', 

where f = u/Reh. ~1 and b depend on the flow regime 
and the Reynolds number is defined by po2rV/p 
where 2r is the (hydraulic) diameter and p is the 
dynamic viscosity. 

Neglecting axial heat conduction, the energy 
equation is written for each part of the system: 

(2) 
where c is the specific heat of the fluid, q denotes 
heat flux input, I? is a heat transfer coefficient, T, the 
wall (or ambient) temperature and @ is the dissi- 
pation function. The last term in equation (2) can be 
expressed as const * V’. 

In the solutions for the two systems in Sections 2 
and 3 it is assumed that the heat transfer coefficients, 
the fluid properties and the geometry (A and P) are 
constant. Dimensionless parameters will be defined 
separately for the two systems, to match Welander’s 
[3] and Creveling’s ES] notations. 
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2. THE TWO VERTICAL BRANCHES WITH 
POINT HEAT SOURCE AND SINK (LOOP I) 

The loop consists of two insulated vertical branches 
of lengths :L. Small sections of lengths As at 
the bottom and top are heated and cooled by 
constant wall temperatures AT and -AT re- 
spectively (see Fig. 1). The heat transfer coefficients h 
there tend to infinity while As + 0 in such a way that 
the heat addition remains finite (point source and 
point sink). 

Following Welander [3], laminar flow is assumed 
where the shear stress at the wall depends linearly on 
the mean velocity (and on the flow rate). Equation 
(1) then takes the form: 

(3) 

where F is a frictional coefficient. The parameters are 
made dimensionless by scaling lengths by L/2, time 

by L/(2hAs), temperature by AT and flow rate by 
PhAAs/(pc). (Note that Ph/pc was denoted k by 
Welander.) The non-dimensional momentum equa- 
tion is: 

dQ s 2 

X+&Q = )a Tds, 
0 

(4) 

where E = FL/(2hAs) and a = g~ATL/2(hAs)2. The 
energy equation (2) for the insulated vertical branches 
takes on the following dimensionless form : 

dT 
z+Qg=$Q’. 

4 is the dissipation coefficient; for a parabolic 
velocity profile, the definition of 4 yields 
4 = &/a)(gjIL/c). In Welander’s [3] solution dissi- 
pation is ignored. There may be cases for which this 
term is not negligible, as can be seen by a calculation 
of q5. 

The boundary conditions for the temperature 
distribution are obtained by considering the source 
and sink. Following, again, Welander [3], we get for 
Q > 0 at the source: 

To-T2 = (l-T2)(l-e-‘/Q), (6a) 

and at the sink : 

T1+-T1- = -(l+T1-)(l-e-l’Q), (6b) 

where To = T,= O+As/Z; T1- = Tl-as/2 etc. 

When 4 = 0 the flow system is antisymmetric and 
only one branch and one boundary condition need 
be treated. Here the two branches must be con- 
sidered. The steady state solution is derived by 
solving, first, equations (5) and (6) with dT/dt = 0, 

leaving Q as an unknown constant. The resulting 
temperature distribution is given by: _ 

T=f#JQ s+$ ( > l-e-l/C f- 
l+e-l/Q_’ 

0 < s < 1, (7a) 

1 < s < 2. (7b) 

This steady state temperature distribution is shown 
schematically in Fig. 3. The steady state flow rate is 
obtained from equation (4), after performing the 

c- -- aQ 

-- $,=o 
1 Y=dii--- , _,-r/o 

- @>O 
x = ye.l/a 

FIG. 3. The temperature distribution in the first loop. 

integral using (7). It is found that C$ vanishes 
completely and the equation for Q is that obtained by 
Welander [3] for the case of no dissipation : 

@a) 

or 

20 
&Tij= 

1 -e-l/Q. (8b) 

The vanishing of the dissipation terms from the 
buoyancy integral is illustrated in Fig. 3. Since the 
integral is the sum of the two areas between T and 
the s axis, it is seen that the same areas are added 
and subtracted by any 4 > 0 to those for C$ = 0. 

The solution for Q, depending on a single 

parameter U/E, was obtained numerically by Welan- 
der [3]. We add here the asymptotic solutions for 
small and large values of u/s: 

- 
Q-+u/E as u/&+0, Pa) 

as alE+co. (W 

Stability of the steady state motion is analyzed by 
linearized stability equations. Writing the flow rate 
and temperature as: 

Q(t) = Q +& ear, 

T(t, s) = ifi(s) + p(s) e”‘, 
(10) 
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where & and ?’ are small deviations, the perturbation 
equations derived from (4) (5) and (6) become (after 
subtracting the steady state equations): 

F _p e-':Q_ f+T 
1+ 1 -$ e-‘@o = 0. 

Q 
(1 Id) 

In (1 lb) use was made of the steady state 
temperature distribution (dT/ds = 40). This equa- 
tion is solved for p(s) in terms of Q: 

-i‘ = c.e-!“al~+deQ, t i j = r,f, (12) 
(T 

r denotes the right branch, I the left one. Introducing 
(12) into (1 la) to perform the integral, the following 
relation is obtained: 

._ 

Q = ziQz (1 -e-“‘Q)(C,-C,e-n’e). (13) 

The conditions (I lc), (1 id) yield, after using (12): 

C,-C/@ = - 
2iz 

Q* 
1 +me-“~e 

(14) 

where 

m = e-“Q, .=e_:IP l+%cI, ) 
Q i i 

(15) 

and the definition of n is also based on @a). The 

characteristic equation for c is now obtained by 
introduction of (14) into (13): 

_ 

1 $-me-“‘@+ s (1 -e-‘lo) = 0, (16) 

which is identical to that derived by Welander [3] 
for the case of no dissipation. (Note that tn and n 

depend on Q only and thus are independent of 4.) 
Therefore, the solution of equation (16) and the 
curve of marginal stability obtained by Welander (in 

the E -Q plane) hold for any value of 4. 
It might seem surprising that dissipation does not 

have any effect on the stability of the system. 
However, the mechanism of instability, as explained 
by Welander [3] stems from phase shifts between the 
flow rate and buoyancy force. Apparently, the phase 
shift does not depend on 4 for the system under 
consideration: note that the buoyancy integral and 
the steady state flow rate are independent of the 
dissipation term. 

3. THE CIRCULAR LOOP, DISTRIBUTED 
HEATING AND COOLING (LOOP II) 

The toroidal loop, shown in Fig. 2, was treated by 
Crevefing et al. [S] without regarding dissipation 
effects. A uniform heat flux 4 is applied at the 

circumference of the lower half and the upper half 
wall temperature 7; is kept constant. According to 
the assumptions mentioned above, the momentum 
and energy equations (1) and (2) are: 

2 
-_ 

r 
X 1 pF&Re-‘V2, (17) 

311 - ,,. T+ -5 
).2 

cDr’dr’, O<t)<n, 

zz 
2 2 ’ 

J 

(18) 
r; y + 7 Or’dr’, n < t? < 27r, 

where T is the temperature above TV. The boundary 
conditions are given by the continuity of the 
temperature distriblltion. Three cases will be con- 
sidered; laminar flow with a = 16, h = 1, the other 
two based on the observations of Creveling er al. [5]: 

laminar flow with u = 151, h = 1.17 and turbulent 
regime with u = 0.88, h = 0.45, transition occurring 
at Re z 1500. 

The parameters are made dimensionless by scaling 
temperature by y//i, velocity by U and time by 
ZaR/U. li is a characteristic velocity, based on the 
approximate steady state solution obtained by 
Creveling et ai.: 

The dimensionless form of equations (17) and (18) 
takes the form: 

327r 
TcosOdB-- V2-b 

E ’ 
(20) 

(7T ?T 

irrfZXV-=: i 

-2DTf~V2, 0 < H < n, 

(70 20+5bv2, ?r<O<2n, 
(21) 

where D = ‘nRh/y,crfJ, E = 16rReb,,/aR, 

Re,, = 2rp,U/p and for a parabolic velocity profile 
4 = 4Dy~RJnc. It is noted that 4/D for laminar flows 
with a parabolic velocity profile would be very small 
(less than 10d3) in a loop of the type investigated by 
Crevefing et ul. [5]. However, the value of this 
dissipation parameter will considerably increase for 
turbulent flows: moreover, according to the obser- 
vations of Damereff and Schoenhals [6], the velocity 
profile is much more compficated, including regions 
of reversed flow. This would be associated with more 
viscous dissipation. Finally, since the parameter 4 
depends linearly on the thermal expansion coefficient 
ji’, the effects of dissipation will be most important in 
cryogenic applications, where /i’ has relatively large 
values. It is well known, indeed, that in such flow 
applications, viscous dissipation must be taken into 
account. 

The steady state solution procedure is similar to 
that used above. The tenlperature distribution is 
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obtained by integration of (21), taking into account 
the conditions T(27c) = T(O), T(K) = T(n+): 

0 < 0 < 7c, (22a) 

+2D+@72 e-D.:r 4v2 

2V I-e-D!‘+=> 

n < 0 < 27~ (22b) 

This distribution is introduced into (20), leading to 
the following equation for the steady state velocity 

V: 

2D+$P2 

i 

D(1 fe-D/‘) 

V 1f2~[l+(D/nl;‘)2](l-e-D’“) i 

= 4Dv2-‘. (23) 

The solution of Creveling et al. [5] with no 
dissipation (4 = 0) is an approximation for small D. 

The left hand side of (23) reduces then to 4D/p, 
hence V = 1 and the steady state velocity is U. 

A numerical solution of equation (23) yields the 
results shown in Fig. 4 for v as a function of D for 
various values of the ratio 4/D. It is seen that the 
approximation for small D is quite good when 
D < 1. 

The asymptotic behavior of equation (23) for 
small and large D becomes: 

2D+$v2 = 2D1/3-b, D cc 1, (24a) 
2D+4t;’ = 4D1/3mh, D >>l, (24b) 

and the asymptotic solutions for no dissipation are: 

v=l, D<<l, 4=0, (25a) 

v = (0,5)1/‘3~h’ 

= 

7 

0.707 b = 1, 

0.685 b = 1.17, D ~1, 4 = 0. (25b) 

0.762 b = 0.45, 

These results are explained by the following 
reasoning: a large D can imply a large heat transfer 
coefficient h, causing smaller temperatures and 
therefore smaller buoyancy, hence also smaller 
velocities. If an increase in D is caused by a smaller 
value of the specific heat c, the results must be 
investigated more carefully: while the dimensionless 
velocity V decreases, the real velocity increases 
because c also appears in the definition of the 
characteristic velocity U. Indeed, a smaller specific 
heat would serve to increase temperature changes 
along the loop and thus to increase the buoyancy. 

As can be seen from Fig. 4, dissipation tends to 
increase the steady state flow rate. This is explained 
by the following argument: the heat input of the 
source is a given constant; the effect of dissipation is 
a further temperature increase of the fluid. At steady 
state, this energy has to be transferred out by the 
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FIG. 4. The steady state velocity as a function of D and the 
dissipation parameter (second loop): a: laminar flow, 
b = 1; b: laminar flow, b = 1.17; c: turbulent flow, 

b = 0.45. 

circulating fluid, thereby increasing the flow rate in 
the loop. It can also be noticed that the additional 
energy (which can also be termed shear drag effect) is 
exactly equal to the work done by the gravitational 

field, expressed by $ pg dz. 
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FIG. 5. Marginal stability curves in the E-D plane, for 
various dissipation parameters (second loop). 

Stability of the steady state motion is analyzed by 
the same procedure used in Section 2. The velocity 
and temperature are written as: 

V(t) = V+ Pe”‘, T(t, 0) = T(0) + P(0) e”‘, 

(26) 

where P and Y? are small perturbations. Introducing 
(26) into (20) and (21), linearizing the equations and 
substituting the steady state relations, the following 
perturbation equations are obtained: 

0(20+4V*) 1-ed2’ 
- 

aV2 
m7 (294 

ci = cze 
_c,p+4~*-220 24v 

irV rsf2D 

D(~D+#J~~) 1 
- 

av2 
I-~-D/V. (29d) 

The temperature distribution (29) is now used to 
perform the integral in (27) yielding the characteris- 
tic equation for 0: 

y(e) = Cl 

^ 872 2n 
av=- s DE o 

tcos0d&G v, ’ (27) 

-20~+24i7~, o<e<n, 
= 

24vv, Tc< e< 2n. 
(28) 

Equations (28) are solved for p(s), using di=/dtI from 
(22) and imposing the continuity conditions 

P(O)= $(2n), T(C) = T(lt+): 

";; I+ D(2D+4p2) 1 DfJ 

av2 1_e-D/P e vn 

+q*+ $) iF-- 

$ (e-a/v+e-“/2i7) 

- c2 

1+ & 

( > 

2 +2c#JVP 

u+2D' 
0 < 0 < n, (29a) 

-40 g+l =O. (30) 
( i 

0 0 bv2-2D 
T = c,Pe-,;+ oB p, K < 6’ < 2n, (29b) 

where Curves of marginal stability (vanishing of the real 
part of 0.) in the E-D plane are obtained from 
equation (30) by the Nyquist criterion in a method 

1 
‘2 = eD/B_e-n/V 
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EFFET DE LA DISSIPATION SUR LES BOUCLES DE CONVECTION NATURELLE 

R&urn&On prtsente une ttude thkorique de I’effet de la dissipation sur les boucles de convection 
naturelle chauffkes g la base et refroidies au sommet. Un modtle monodimensionnel avec l’unique 
coordonnie d’espace suivant le parcours est appliqut i deux types de boucles: (I) deux branches 
verticales avec source et puits de chaleur ponctuels, et (II) un tore chauffk i flux uniforme ti sa moitib 
infbrieure et refroidi B temptrature par&ale uniforme a la moitie suptrieure. On trouve que, pour 
I’koulement laminaire, dans la premiere boucle la dissipation affecte seulement la distribution de 
temptrature sans modifier le d&bit permanent ni les caracttristiques de stabilitir. Dans la seconde boucle, 
aussi bien pour les tcoulements laminaires que turbulents, les vitesses en rigime permanent sont 
augmenties par la dissipation. On donne des courbes de stabilitb marginale pour diffkrents facteurs de 

dissipation. 

DER EINFLUSS DER DISSIPATION AUF FREIE KONVEKTIONSWALZEN 

Zusammenfassung-Eine theoretische Berechnung des Dissipationseinflusses auf von unten beheizte und 
von oben gekiihlte natiirliche Konvektionswalzen wird dargestellt. Ein eindimensionales Model], bei dem 
die einzige Raumkoordinate entlang der Walze verlguft, wird auf zwei Typen von Walzen angewandt: (I) 
zwei vertikale Zweige mit punktfarmiger WBrmequelle und Senke und (II) eine ringfiirmige Walze, die 
durch einen gleichf6rmigen Wtirmestrom in der unteren Hglfte beheizt und bei konstanter Wandtemper- 
atur in der oberen Hdlfte gekiihlt wird. Es zeigt sich. daD bei laminarer Striimung in der ersten Walze 
Dissipation nur die Temperaturverteilung, aber weder die stationHre Massenstromdichte noch das 
Stabilitltsverhalten beeinHul3t. Bei laminaren und turbulenten Strtimungen in der zweiten Walze werden 
durch Dissipation die stationdren Geschwindigkeiten vergriil3ert. Es werden fiir verschiedene Dissipations- 

faktoren Kurven der Grenzstabilitlt angegeben. 
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BJIMIlHME flACCkitlAUMM B KOHTYPAX CO CBOSO.QHOfi KOHBEKLJMER 

AnHoTaqHa- npenCTaB,IeH TeOpeTWIeCKHi? paC'ieT BJIHIlHWIl llWCCHna4WW Ha eCTeCTBeHHyI9 UHpKy- 
,MUBH) B HarpeBaeMbIX CH&iJy H OXlIaWiaeMbIX CBepXy KOHTypX. OLlHOMepHan MOL,eJIb. B KOTOpOii 

"pOCTpaHCTBeHHa,l KOOpn"HaTa HanpaBneHa BnO,Ib KOHTypa, HCnOJIb3yeTCSI nJI5I paC'IeTa AlByX TA"OB 

KOHTypOB: (t)LlBa BepTUKaJbHbIX KaHaJIa C TOYe'lHbIM HCTO'IHWKOM W CTOKOM TenJIa, H (It) TOppO- 

HL,aJIbHbIi-,KOHTyp.Ha~~BaeMbIii 3aCVeT paBHOMepHOr0 nOLIBOna TenJIa K HWKHei-i nOJIOBWHe KOHTypa 

w 0xnaanaeMbIl BcnencTme Hanww4 ~OCTO~HHO~ TeMnepaTypbIcTeHKa B ero ~epx~el qacTB. 

HafineHo, ',TO npH JIaMHHapHOM nOTOKe B nepBOM KOHType ILHCCIIIIIII‘III OKaJbIBaeT BJIBIlHUe 

TOJIbKO Ha paCnpWeneH&ie TeMnepaTyp,HO He BJIWIleT HW Ha CKOpOCTb CTa6HJlH3HpOBaHHOrO TCqeHAR, 

HU Ha yCTOii',,,BOCTb Te'IeHAII. B CJIyYaeJaMBHapHOI-0 W Typ6yJIeHTHOrO nOTOKOB BO BTOpOM KOHTyp 

CKOpOCTb CTa6kiJILi3&ipOBaHHOrO TeYeHBIl BO3paCTaeT 38 C'IeT LUiCCUnaUHB. npeLlCTaBJIeHb1 HefiTpaJIb- 

HbIC KpHBbIe yCTOiiWBOCTH np&l pa3JIWIHbIX K03+&iUAeHTaXLlkiCCSinaUH&i. 


