Ini. J. Heat Mass Transfer. Vol. 22, pp. 15391546,
© Pergamon Press Ltd. 1979.  Printed in Great Britain

0017-9310/79/1101 - 1539 $02.00/0

THE EFFECT OF DISSIPATION ON
FREE CONVECTION LOOPS

YORAM ZVIRIN®
Faculty of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa, Israel

(Received 13 October 1978 and in revised form 7 February 1979)

Abstract—A theoretical evaluation is presented of the effect of dissipation on natural circulation loops,
heated from below and cooled from above. A one dimensional model, wherein the only space coordinate
runs along the loop, is applied to two types of loops: (I) two vertical branches with point heat source and
sink, and (II} a toroidal loop heated by a uniform heat flux at the lower half and cooled by a constant

wall temperature at the upper half.

It is found that for laminar flow in the first loop, dissipation affects only the temperature distribution
but neither the steady state flow rate nor the stability characteristics. For laminar and turbulent flows in
the second loop, the steady state velocities are enhanced by dissipation. Curves of marginal stability for

various dissipation factors are given.

NOMENCLATURE
A, cross-sectional area;
a, coefficient in the expression for the friction
coefficient f;
b, coefficient in the expression for the friction
coefficient f';
C;,  constants of integration, equations {12) and

(29%;

c, specific heat;

D, dimensionless parameter for loop II,
equation (20);

E, dimensionless parameter for loop II,
equations (20, 21);

F, overall frictional parameter for loop I;

£ friction coefficient, f = a/Re’;

d, acceleration of gravity;

h, heat transfer coefficient ;

L, total length of loop I;

m, constant, equation (15);

n, constant, equation (15);

P, ratio of perimeter to cross sectional area;

Q, volumetric flow rate;

4, heat flux input;

R, major radius of torus (Fig. 2);

Re, Reynolds number;

r, (Hydraulic) radius of flow channel (minor
radius of torus—Fig. 2);

S, total circulation length;

S, coordinate along the loop;

As, length of heat source (and heat sink);
T, temperature;

T, reference temperature;

T,.  wall {or ambient) temperature;

AT, AT, (constant) wall temperatures
at heat source and sink;
t, time;

*Presently on a sabbatical leave at Electric Power
Research Institute 3412 Hillview Avenue, Post Office Box
10412, Palo Alto, CA 94303, US.A.

U, characteristic velocity of loop II,

equation {19);
v, mean velocity;
¥, complex f{unction, equation (30);
z, vertical coordinate.

Greek symbols

o, dimensionless parameter for loop I,
equation (4);

B, thermal expansion coefficient ;

g, dimensionless parameter for loop I,
equation (4);

g, angular coordinate;

U, dynamic viscosity;

0 density;

reference density (at temperature T, ,);

a, stability parameter, equations (10), (26);

Ty wall shear stress;

O, dissipation function;

¢, dimensionless dissipation parameter,
equation (5) for loop I or equation (21) for

loop IL.
Superscripts
o, steady state;
5 amplitude of the deviation from steady
state.

1. INTRODUCTION

SoME geophysical phenomena as well as several
engineering applications involve free convection
loops where a fluid is heated from below and cooled
from above. These loops appear in atmospheric and
oceanic flows, in refrigeration cycles of the absor-
ption type, in cryogenic systems and in the most
commonly used system for solar energy utilization—
the thermosyphon solar water heater. Shitzer et al
[1] investigated the performance of such a heater
(140 liters storage tank, about 3m? collector area)
and measured at noontime on a clear summer day in
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Haifa, Israel (latitude 32°N) flow rates of the order of
1kgmin~?!, associated with a temperature variation
between 55 and 70°C along the collector. Keller [2]
and Welander [3] treated analytically a loop
consisting of two vertical branches with a point heat
source and a point heat sink (Fig. 1). They
investigated steady state behavior and oscillatory
instability of it. Zvirin and Greif [4] investigated the
transient behavior of this loop. Creveling et al. [5]

Point heat ~AT
sink _a‘l?\ xS = k-

a8

T(s)

ATerS = %2As8

s=0

Point heat \5)
source

F1G. 1. The loop of two vertical branches with point heat
source and sink.

Constant wall
temperature T,,

Cooling
medium

Uniform
heat flux g

F1G. 2. The circular toroidal loop.

and Damerell and Scheonhals [6] studied experi-
mentally and theoretically the instability of a circular
loop (Fig. 2) caused by heating uniformly the lower
half and cooling by constant wall temperature at the
upper half. Ong [7] suggested a numerical method to
evaluate the performance of the thermosyphonic
solar water heater. Zvirin et al. [8,9] have applied
several analytical models for describing the steady
state motion and instability characteristics of such
solar heaters.

All the existing models for natural circulation
loops do not take into account viscous heating of the
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fluid. The purpose of the present work is to study the
effect of dissipation on free convection loops. Two
systems are considered: (I), the two vertical branches
(Fig. 1)—Section 2, and (II), the toroidal loop
(Fig. 2}--Section 3. For laminar flow in the first
system it is found that while the steady state
temperature distribution is changed due to dissi-
pation, the flow rate as well as the stability
characteristics are not affected at all. For laminar
and turbulent flows in the second system both
temperature and flow rate at steady state are
modified by viscous heating. The results of Creveling
et al. [5] for the case where dissipation can be
neglected are extended here by a more accurate
solution. Finally, the effect of dissipation on the
stability of the system is evaluated.

The models for natural convection loops are all
one dimensional: the only space coordinate s runs
along the circulation loop. The temperature T is thus
the mean cross-sectional. Use is being made of the
Boussinesq approximation wherein the density p is
taken to be constant in the governing equations
except for the buoyancy forces  where
0 = pui[1=B(T~T,)]; B is the thermal expansion
coefficient and p, is the density at some reference
temperature T,,. According to these assumptions
and the continuity equation, the flow rate Q is
uniform along the loop at any time 1.

The momentum equation is obtained by in-
tegration along the closed loop, thus the pressure
terms vanish. Following Welander [3] and Creveling
et al. [5], the resulting equation is:

pO—S ~poz]ﬁ§>Td“ #Pr ds, (N

where V is the mean velocity @/4, 4 is the cross-
sectional area, § is the circulation length, g the
acceleration of gravity, z a vertical coordinate and P
is the ratio of perimeter to cross-sectional area. The
wall shear stress 1,, is expressed by 7, = fp(Vuc),
where f= a/Re". « and b depend on the flow regime
and the Reynolds number is defined by py2rV/u
where 2r is the (hydraulic) diameter and p is the
dynamic viscosity.

Neglecting axial heat conduction, the energy
equation is written for each part of the system:

—Ph(T-T,} +% Jd)dA,

eT oTe _
pe &t Cs ) B
{2)

where ¢ is the specific heat of the fluid, 4 denotes
heat flux input, 4 is a heat transfer coefficient, T,, the
wall (or ambient) temperature and @ is the dissi-
pation function. The last term in equation (2) can be
expressed as const* V2,

In the solutions for the two systems in Sections 2
and 3 it is assumed that the heat transfer coefficients,
the fluid properties and the geometry (4 and P) are
constant. Dimensionless parameters will be defined
separately for the two systems, to match Welander's
[3] and Creveling’s [ 5] notations.
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2. THE TWO VERTICAL BRANCHES WITH
POINT HEAT SOURCE AND SINK (LOOP I)

The loop consists of two insulated vertical branches
of lengths 4L. Small sections of lengths As at
the bottom and top are heated and cooled by
constant wall temperatures AT and —AT re-
spectively (see Fig. 1). The heat transfer coefficients h
there tend to infinity while As — 0 in such a way that
the heat addition remains finite (point source and
point sink).

Following Welander [3], laminar flow is assumed
where the shear stress at the wall depends linearly on
the mean velocity (and on the flow rate). Equation
(1) then takes the form:

g _ 49p

dt L
where F is a frictional coefficient. The parameters are
made dimensionless by scaling lengths by L/2, time
by L/(2hAs), temperature by AT and flow rate by
PhAAs/(pc). (Note that Ph/pc was denoted k by
Welander.) The non-dimensional momentum equa-
tion is:

Tdz—FQ, (3)

2
d—Q +eQ = a J Tds, “4)
dr 0

where ¢ = FL/(2hAs) and a = gBATL/2(hAs)?>. The
energy equation (2) for the insulated vertical branches
takes on the following dimensionless form:

or T
§+Q5=¢Q- (5)

¢ is the dissipation coefficient; for a parabolic
velocity profile, the .definition of ¢ yields
¢ = 3(¢/2)(gBL/c). In Welander’s [3] solution dissi-
pation is ignored. There may be cases for which this
term is not negligible, as can be seen by a calculation
of ¢.

The boundary conditions for the temperature
distribution are obtained by considering the source
and sink. Following, again, Welander [3], we get for
Q > 0 at the source:

To—T, =(1-T)(1—e" 19, (6a)
and at the sink:
T+ =Ti-= —(1+ T -)(1—-e™ 19, (6b)
where Ty = Ti—o+4a523 Ti— = Ti-as2 €tC.

When ¢ = 0 the flow system is antisymmetric and
only one branch and one boundary condition need
be treated. Here the two branches must be con-
sidered. The steady state solution is derived by
solving, first, equations (5) and (6) with 8T /dt = O,
leaving Q as an unknown constant. The resulting
temperature distribution is given by:

T _ e-1Q 1—e-1/0

= -+ ~ —,

oQLs 1—e-1R +1+e—‘/Q
O0<s<1, (7a)
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T=¢Q(S+ 1—-e_'/6>_1+e_”9_’
l<s<2 (7b)

This steady state temperature distribution is shown
schematically in Fig. 3. The steady state flow rate is
obtained from equation (4), after performing the

-

O
|

Rlem

Ol
I
|

Rim

—_—— =0 Y=¢6

1 _e-1/6

#>0 x = ye't/@

F1G. 3. The temperature distribution in the first loop.

integral using (7). It is found that ¢ vanishes
completely and the equation for Q is that obtained by
Welander [3] for the case of no dissipation:

e~ 1-e @ 8
£ T T )
or
20
= _—1—e 8
afe+Q ¢ (8b)

The vanishing of the dissipation terms from the
buoyancy integral is illustrated in Fig. 3. Since the
integral is the sum of the two areas between T and
the s axis, it is seen that the same areas are added
and subtracted by any ¢ > 0 to those for ¢ = 0.

The solution for @, depending on a single
parameter a/e, was obtained numerically by Welan-
der [3]. We add here the asymptotic solutions for
small and large values of o/e:

Q—a/e as a/e—0, (9a)
o llg as  o/e — o0. (9b)
2¢

Stability of the steady state motion is analyzed by
linearized stability equations. Writing the flow rate
and temperature as:

Q) =0 +Qe,

T(t, s) = T(s)+ T(s)e™, (19)
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where Q and T are small deviations, the perturbation
equations derived from (4), (5) and (6) become (after
subtracting the steady state equations):

(a+a)Q=%aJ T ds, (11a)
a
AT
Q- +0T=¢00, (11b)
S
. T oA
To-The "¥+—="e"10 =0, (llc)
N 1+T, _oa
To—T, e'0_ gzle‘l/QQ=0. (11d)

In (11b) use was made of the steady state
temperature distribution (dT/ds = ¢0). This equa-
tion is solved for T(s) in terms of Q:

. +¢5QQ’
g

T = Cem 70> i=rl (12)
r denotes the right branch, I the left one. Introducing
(12) into (11a) to perform the integral, the following
relation is obtained:

6= ?’"@T (1-e~"9)(C,~Cie™"0).  (13)

The conditions (1 1c), (11d) yield, after using (12):

C,~Ce 0 = 25 14
A Y = —mg, ( )
where
L e 1@ &
me=¢ I’Q, n= Qz (1+;Q), (15)

and the definition of n is also based on (8a). The
characteristic equation for ¢ is now obtained by
introduction of (14) into (13):

noQ
oo +¢&)

which is identical to that derived by Welander [3]
for the case of no dissipation. (Note that m and »n
depend on @ only and thus are independent of ¢.)
Therefore, the solution of equation (16) and the
curve of marginal stability obtained by Welander (in
the ¢ — @ plane) hold for any value of ¢.

It might seem surprising that dissipation does not
have any effect on the stability of the system.
However, the mechanism of instability, as explained
by Welander [3] stems from phase shifts between the
flow rate and buoyancy force. Apparently, the phase
shift does not depend on ¢ for the system under
consideration; note that the buoyancy integral and
the steady state flow rate are independent of the
dissipation term.

1+me™ "% + (1—e Q) =0,

(16

3. THE CIRCULAR LOOP, DISTRIBUTED
HEATING AND COOLING (LOOP 1I)
The toroidal loop, shown in Fig. 2, was treated by
Creveling et al. [5] without regarding dissipation
effects. A uniform heat flux ¢ is applied at the
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circumference of the lower half and the upper half
wall temperature T, is kept constant. According to
the assumptions mentioned above, the momentum
and energy equations (1) and (2) are:

"2

Tcos8do

JO

2 1
— < x = pwaRe PV, (17)
ro 2
¢T " V eT
P\t TR @0 )

'
12 2 (1s)
I q -+ '"2‘ J (I)i‘)dl", n<b< 27[,
where T is the temperature above T,. The boundary
conditions are given by the continuity of the
temperature distribution. Three cases will be con-
sidered; laminar flow with ¢ = 16, b = 1, the other
two based on the observations of Creveling et al. {5]:
laminar flow with a =151, b =1.17 and turbulent
regime with a = 0.88, b = 0.45, transition occurring

at Re ~ 1500.

The parameters are made dimensionless by scaling
temperature by g/h, velocity by U and time by
2nR/U. U is a characteristic velocity, based on the
approximate steady state solution obtained by
Creveling et al.:

2b+2rbpa,~ 1{)>qu‘ 143~
v=(F ) )

The dimensionless form of equations (17) and (18)
takes the form:

dv 8z [ 32

v [ Tcos0df — 2" y2=t  (20)

dt _ DE Jo E
oT OT  (—2DT+¢V? 0<f<n,
—+2nV = 21
a " { Wigl? a<o<2m OV

where D = 2nRhjpycrU, E = 16rReb,/aR,
Re,, = 2rp, U/u and for a parabolic velocity profile
¢ = 4DgBR/mc. It is noted that ¢/D for laminar flows
with a parabolic velocity profile would be very small
(less than 1073) in a loop of the type investigated by
Creveling et al. [5]. However, the value of this
dissipation parameter will considerably increase for
turbulent flows: moreover, according to the obser-
vations of Damerell and Schoenhals [6], the velocity
profile is much more complicated, including regions
of reversed flow. This would be associated with more
viscous dissipation. Finally, since the parameter ¢
depends linearly on the thermal expansion coefficient
B, the effects of dissipation will be most important in
cryogenic applications, where f§ has relatively large
values. It is well known, indeed, that in such flow
applications, viscous dissipation must be taken into
account.

The steady state solution procedure is similar to
that used above. The temperature distribution is
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obtained by integration of (21), taking into account
the conditions T(2n) = T(0), T(z ") = T(z™):

W+$VE PO P2
Tav(i-e o) ¢ Te T op
0<0<n (22a)
T=M<ﬂ_1')
2V n
2D+¢pVE e g2
W 1-e T 2
n<6<2rn (22b)

This distribution is introduced into (20), leading to
the following equation for the steady state velocity
V:

2D+4)I72{

D(1+e ")
; %

2V[1+(D/aV)?](1—e~ D)
=4DV?*"h  (23)

The solution of Creveling et al. [5] with no
dissipation (¢ = 0) is an approximation for small D.
The left hand side of (23) reduces then to 4D/V,
hence V = | and the steady state velocity is U.

A numerical solution of equation (23) yields the
results shown in Fig. 4 for V as a function of D for
various values of the ratio ¢/D. It is seen that the
approximation for small D is quite good when
D <1

The asymptotic behavior of equation (23) for
small and large D becomes:

2D +¢T2 = 2DV38,
2D+¢VE=4DV3,

D «1,
D »1,

(24a)
(24b)

and the asymptotic solutions for no dissipation are:

V=1, D«l1, ¢=0, (25a)
V= (0.5)10b
0.707 b=1,
=< 0685 b=117, D>»1, ¢=0 (25b)
0.762 b= 0.45,

These results are explained by the following
reasoning: a large D can imply a large heat transfer
coefficient h, causing smaller temperatures and
therefore smaller buoyancy, hence also smaller
velocities. If an increase in D is caused by a smaller
value of the specific heat ¢, the results must be
investigated more carefully: while the dimensionless
velocity V decreases, the real velocity increases
because ¢ also appears in the definition of the
characteristic velocity U. Indeed, a smaller specific
heat would serve to increase temperature changes
along the loop and thus to increase the buoyancy.

As can be seen from Fig. 4, dissipation tends to
increase the steady state flow rate. This is explained
by the following argument: the heat input of the
source is a given constant; the effect of dissipation is
a further temperature increase of the fluid. At steady
state, this energy has to be transferred out by the
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FIG. 4. The steady state velocity as a function of D and the

dissipation parameter (second loop): a: laminar flow,

b=1; b: laminar flow, b= 1.17; c: turbulent flow,
b =045

circulating fluid, thereby increasing the flow rate in
the loop. It can also be noticed that the additional
energy (which can also be termed shear drag effect) is
exactly equal to the work done by the gravitational

field, expressed by jg pgdz.
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Stability of the steady state motion is analyzed by
the same procedure used in Section 2. The velocity
and temperature are written as:

Viey=V+Ve® T 0) =T@O)+TO)e

(26)
where V and T are small perturbations. Introducing
(26) into (20) and (21), linearizing the equations and

substituting the steady state relations, the following
perturbation equations are obtained:

8n?

. 32n .
oV = " Foos9d0— TP, (27)
DE |, E
dT _dT
2 2V —
oT+ an0+ i 0
3 —2DT+26VV, 0<O<m, (28)
Tl 2070, n<f<2n

Equations (28) are solved for T(s), using dT/d6 from

(22) and imposing the continuity conditions
T(0)=TQ2n), T(x™) = T(x*):
a+2D 8 D(2D+¢I72) 1 D8
W o 7 |—e-Di7 Vo
207V
m, O0<f<m (293)
V? "
T=c,Ve zT +¢—I7— V, n<0<2r, (29b)
[
where
1
€ = oDV _g-al?

2¢I7 n+2D
—a+2D>< w :I

DD +¢V?) 1—-e
aV? 1—e 0V’

[<¢V—2D
X —
oV

(29¢)

_O./V+¢Vz—2D 20V
oV 6+2D
DRD+4V? 1
o 1
The temperature distribution (29) is now used to

perform the integral in (27) yielding the characteris-
tic equation for o

6+2D o+
— 1+C I

Cy =Cy€

(29d)

2V
<0’+2D>2
+ R ——
2nV
+¢V?) 14+e 2V
D? ) 1—e 0/

y(©o) = ¢

(e—a/7+e~a/27)

A
2nV

—4D ok 1 0. (30
(f*’) - (30)

Curves of marginal stability (vanishing of the real
part of ¢) in the E-D plane are obtained from
equation (30) by the Nyquist criterion in a method
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similar to that of Creveling et al. [5]. The results are
illustrated in Fig. 5, for the three cases discussed
here: laminar flow with a = 16, b = 1, laminar flow
with a =151, b=1.17 and turbulent flow with
a= 088, b = 0.45* As can be seen from the results,
the effect of dissipation is not unique and it does not
always make the flow more stable—i.c. the stable
region in the D-E plane does not always enlarge
with the dissipation parameter. In turbulent flow, the
dissipation effect is mostly to decrease the stable
zone. It is mentioned, again, that the mechanism of
instability is rather complicated and is explained by
the phase shift between the oscillations in the flow
rate and buoyancy force. The dependence of this
phase shift and therefore the marginal stability
curves on the dissipation parameter is obviously not
uni-directional.

Acknowledgements—T1he author is grateful to Mr. Danny
Wolfshtein, who performed the numerical calculations, and

to Professor R. Greif and Mr. A. Mertol for their helpful
comments.

* It is noted that the marginal stability curve for laminar
flow with b = 1.17 obtained here is somewhat different than
that derived by Creveling et al. [5]. This difference follows
from the approximation made in [5] leading to V' = 1. As
mentioned above, the approximation is justified for D < 1;
therefore, the marginal stability curve for turbulent flow
(Fig. 5) which lies in this region, is identical with that of [5].
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EFFET DE LA DISSIPATION SUR LES BOUCLES DE CONVECTION NATURELLE

Résume—On présente une étude théorique de l'effet de la dissipation sur les boucles de convection
naturelle chauffées a la base et refroidies au sommet. Un modéle monodimensionnel avec l'unique
coordonnée d’espace suivant le parcours est appliqué a deux types de boucles: (I) deux branches
verticales avec source et puits de chaleur ponctuels, et (II) un tore chauffé a flux uniforme & sa moitie
inferieure et refroidi 4 température pariétale uniforme a la moitié supérieure. On trouve que, pour
I'écoulement laminaire, dans la premiére boucle la dissipation affecte seulement la distribution de
température sans modifier le débit permanent ni les caractéristiques de stabilité. Dans la seconde boucle,
aussi bien pour les écoulements laminaires que turbulents, les vitesses en régime permanent sont
augmentées par la dissipation. On donne des courbes de stabilité marginale pour différents facteurs de
dissipation.

DER EINFLUSS DER DISSIPATION AUF FREIE KONVEKTIONSWALZEN

Zusammenfassung —Eine theoretische Berechnung des Dissipationseinflusses auf von unten beheizte und
von oben gekiihlte natiirliche Konvektionswalzen wird dargestellt. Ein eindimensionales Modell, bei dem
die einzige Raumkoordinate entlang der Walze verlduft, wird auf zwei Typen von Walzen angewandt: (I)
zwei vertikale Zweige mit punktférmiger Wiarmequelle und Senke und (II) eine ringférmige Walze, die
durch einen gleichformigen Wirmestrom in der unteren Hélfte beheizt und bei konstanter Wandtemper-
atur in der oberen Hailfte gekiihlt wird. Es zeigt sich, daB bei laminarer Strémung in der ersten Walze
Dissipation nur die Temperaturverteilung, aber weder die stationdire Massenstromdichte noch das
Stabilitdtsverhalten beeinflult. Bei laminaren und turbulenten Strédmungen in der zweiten Walze werden
durch Dissipation die stationdren Geschwindigkeiten vergréBert. Es werden fiir verschiedene Dissipations-
faktoren Kurven der Grenzstabilitdt angegeben.
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BJIMSSHUE AUCCHUIAILIMU B KOHTYPAX CO CBOBOAHOW KOHBEKLIMEN

AnHotanus — [IpeCcTaBiIeH TEOPETHYECKHA pacHeT BJIHAHHA AMCCHMAlIlMH Ha ECTECTBEHHYIO NHPKY-
JALAIO B HATPEBAEMBIX CHH3Y W OXJIaXKIAeMBIX CBEPXY KOHTypax. OmHoMepHas MoIenb, B KOTOPOWH
NPOCTPAHCTBEHHAs KOOPAHHATA HATNpPAaBJ/iCHA BJOJb KOHTYpa, HCIOJIb3YETCS /IS pacueTa [ABYX THNOB
KOHTYpoB: (I) ABa BepTHKa/bHBIX KaHalla C TOYEYHbIM HCTOYHHKOM H cTokom Terua, H (II) Toppo-
HAANBHBIA KOHTYpP, HarpeBaeMblii 3a cueT paBHOMEPHOIO NOJABOMAA TeIU1a K HHXKHEH MOJOBHHE KOHTYpa
H OXJIaX/Ia€MBblii BCJIEJICTBHE HAJIHYHA [IOCTOAHHOM TeMnepaTypbl CTCHKH B ero BepXHeH 4acTH.
HaiineHo, 4TO NMpH JaMHHapDHOM MNOTOKE B IEPBOM KOHTYpEe [AHCCHIAllMA OKa3bIBACT BIIHAHHE
TOJIBKO Ha Pacnpesie/icHHe TEMNEPATYP, HO HE BJIHAET HH Ha CKOPOCTb CTaGHJIN3HPOBAHHOTO TEYCHHA,
HH Ha YCTOW4YMBOCTb Te4eHHA. B ciydae n1aMHHApHOTO M TYpOYJEHTHOrO MOTOKOB BO BTOPOM KOHTYpE
CKOPOCTb CTaOWJIM3HPOBAHHOI'O TEYEHHs BO3pacTaeT 3a cyeT AMccHnaumn. [lpeacTtaBiieHbl HEHTpasb-
Hble KPHUBbIE YCTOHYMBOCTH NIPH Pa3iHYHbIX K03DPHUHEHTAX THCCHIALMA.



